Exhaustive search as a baseline for important problems

Summary

Exhaustive Search

- Estimate the number of candidates
- Generate candidates one at a time and test for the optimal solution

Optimization techniques for Exhaustive Computation

1.Avoid recomputation between successive candidates (Maxsublist 2, KMP)
2.Reduce the size of the candidate set (Max-sublist 3, Euclidean GCD)
3.Eliminate non-promising candidates during the search: backtracking (n -Queens problem)

Exhaustive algorithms: Sorting

Selection sort

- Scan array to find smallest element
- Scan array to find second smallest element
- etc.

Complexity?

Can we do better? Yes. See divide-and-conquer.

Exhaustive algorithms: Searching

Sequential scan:

- Go through the entire list of n items to find the desired item
Complexity?

Can we do better?
No. Not really.

Exhaustive algorithms: graph traversals

DFS and BFS:

- Shortest paths in unweighted graphs
- Topological sorting
- Discovering strongly-connected components

Complexity?

Can we do better?
No. Not really. We have to traverse all the vertices and edges

Exhaustive algorithms: knapsack 01

Exhaustive knapsack algorithm for n items:

- Generate all possible knapsacks
- Discard all combinations that do not fit
- Compute value of each knapsack and select thje one with max value

Complexity?

Can we do better?
Yes. See dynamic programming

Introducing Closest Pair

Closest-Pair Problem

Input: n points in d-dimensional space
Output: a pair of points with the smallest distance between them

Motivation

- Airplanes close to colliding
- Which post offices should be closed
- Which DNA sequences are most similar
- The nearest-neighbor classifier

Brute Force for Closest Pair

- Exhaustive Solution (for 2-D case):
- Compute distances between all pairs of points

$$
\operatorname{sqrt}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)
$$

- Scan all distances to find smallest
- Running time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$, assuming each numerical operation is constant time (including square root?)
- Improvements:
- Drop the square root
- Don't compute distance for same 2 points twice
- Does it improve complexity?

Can we do better?
Yes, see divide-and-conquer.

Summary of algorithms so far

- Graph Traversals
- GCD*
- Generating primes*
- Max sublist*
- Sorting*: selection sort
- Searching: pattern search*
- Geometry: the closest pair*
-Knapsack 01*
* We improved just by applying an optimization ...
* Can be improved with divide-and-conquer
* Can be improved with dynamic programming

